2 research outputs found

    A Brand-New, Area - Efficient Architecture for the FFT Algorithm Designed for Implementation of FPGAs

    Get PDF
    Elliptic curve cryptography, which is more commonly referred to by its acronym ECC, is widely regarded as one of the most effective new forms of cryptography developed in recent times. This is primarily due to the fact that elliptic curve cryptography utilises excellent performance across a wide range of hardware configurations in addition to having shorter key lengths. A High Throughput Multiplier design was described for Elliptic Cryptographic applications that are dependent on concurrent computations. A Proposed (Carry-Select) Division Architecture is explained and proposed throughout the whole of this work. Because of the carry-select architecture that was discussed in this article, the functionality of the divider has been significantly enhanced. The adder carry chain is reduced in length by this design by a factor of two, however this comes at the expense of additional adders and control. When it comes to designs for high throughput FFT, the total number of butterfly units that are implemented is what determines the amount of space that is needed by an FFT processor. In addition to blocks that may either add or subtract numbers, each butterfly unit also features blocks that can multiply numbers. The size of the region that is covered by these dual mathematical blocks is decided by the bit resolution of the models. When the bit resolution is increased, the area will also increase. The standard FFT approach requires that each stage contain  times as many butterfly units as the stage before it. This requirement must be met before moving on to the next stage

    Design and Implementation of High QoS 3D-NoC using Modified Double Particle Swarm Optimization on FPGA

    Get PDF
    One technique to overcome the exponential growth bottleneck is to increase the number of cores on a processor, although having too many cores might cause issues including chip overheating and communication blockage. The problem of the communication bottleneck on the chip is presently effectively resolved by networks-on-chip (NoC). A 3D stack of chips is now possible, thanks to recent developments in IC manufacturing techniques, enabling to reduce of chip area while increasing chip throughput and reducing power consumption. The automated process associated with mapping applications to form three-dimensional NoC architectures is a significant new path in 3D NoC research. This work proposes a 3D NoC partitioning approach that can identify the 3D NoC region that has to be mapped. A double particle swarm optimization (DPSO) inspired algorithmic technique, which may combine the characteristics having neighbourhood search and genetic architectures, also addresses the challenge of a particle swarm algorithm descending into local optimal solutions. Experimental evidence supports the claim that this hybrid optimization algorithm based on Double Particle Swarm Optimisation outperforms the conventional heuristic technique in terms of output rate and loss in energy. The findings demonstrate that in a network of the same size, the newly introduced router delivers the lowest loss on the longest path.  Three factors, namely energy, latency or delay, and throughput, are compared between the suggested 3D mesh ONoC and its 2D version. When comparing power consumption between 3D ONoC and its electronic and 2D equivalents, which both have 512 IP cores, it may save roughly 79.9% of the energy used by the electronic counterpart and 24.3% of the energy used by the latter. The network efficiency of the 3D mesh ONoC is simulated by DPSO in a variety of configurations. The outcomes also demonstrate an increase in performance over the 2D ONoC. As a flexible communication solution, Network-On-Chips (NoCs) have been frequently employed in the development of multiprocessor system-on-chips (MPSoCs). By outsourcing their communication activities, NoCs permit on-chip Intellectual Property (IP) cores to communicate with one another and function at a better level. The important components in assigning application duties, distributing the work to the IPs, and coordinating communication among them are mapping and scheduling methods. This study aims to present an entirely advanced form of research in the area of 3D NoC mapping and scheduling applications, grouping the results according to various parameters and offering several suggestions for further research
    corecore